A Heating System defines how a building's spaces are heated. The system covers how heating is generated and delivered to spaces. Following is a full list of the current systems options in cove.tool which cover all code baselines and more energy efficiency solutions. To see how each of these systems interact with specific air and cooling systems refer to the System Types article.

Gas Boiler

Gas Boilers produce heat by burning fossil fuel, typically natural gas. Heat energy is distributed throughout the building by water and electric pumps are used for the circulation. Gas Boilers are a common and versatile heat source with their main drawback being the the burning of fossil fuels. cove.tool supports Gas Boiler systems with any air system and corresponding independent cooling systems.

Electric Boiler

Electric Boilers produce heat by electric resistances. Heat energy is distributed throughout the building by water and electric pumps are used for the circulation. Electric Boilers are less common than gas currently, however are just as versatile. The main drawback of electric boilers is the low efficiency of converting electricity directly to heat. cove.tool supports Electric Boiler systems with most air system and corresponding independent cooling systems.

Electric Resistance

Electric Resistance produces heat by passing electric currents through resistor elements. Heat is distributed by the power cables themselves direct point of use as either coils in AHU or elements within spaces such as reheats or electric baseboard elements. Electric resistance heat is the most basic method to produce heat via electricity. Electric Resistance systems are most common in warmer climates where heating requirements are low. The main drawback of electric resistance is the low efficiency of converting electricity directly to heat and safety concerns. cove.tool supports Electric Resistances systems with various air system and corresponding independent cooling systems. More on Electric Resistance heating on energy.gov

Ground Source Heat Pump

A Ground Source Heat Pump (GSHP) uses the constant temperature of the Earth's crust to exchange heat instead of the air, which temperature varies throughout a day and the year. By utilizing this constant temperature difference the heat pump is able to achieve a higher and more consistent COP than an air source equivalent. Typical GSHP access this constant temperature through boreholes which can range from 100 to 600 feet deep and must be spaced at least 20 feet apart. These boreholes lead to high construction costs that must be offset by the energy and cost savings. The heat pump itself can provide heating hot water, chilled water or both. Like a standard boiler the heat energy is distributed by water with electric pumps used for the circulation. More about GSHP on energy.gov

Air Source Heat Pump

An Air Source Heat Pump (ASHP) uses the outside air to exchange heat with the building. The efficiency of these systems is dependent on the local climate and in some extremely cold climates will not be able to provide heat at all times. These heat pumps are typically located on a buildings roof and may require a large footprint depending on the total load required. Even with these limitations ASHP are still a great option for electrification as they provide a COP above 1 for heating operation. Like a standard boiler the heat energy is distributed by water with electric pumps used for the circulation. More about ASHP on energy.gov

Variable Refrigerant Flow

Variable Refrigerant Flow (VRF) providing heating and cooling via room units. See this article for details about this unique HVAC solution

Did this answer your question?