Solar panels, also known as photovoltaics (PV), are an assembly of silicon cells mounted in a frame with wiring that helps absorb and convert sunlight into usable electricity. When light hits a silicon cell, the light causes electrons in the silicon to be set in motion, initiating a flow of electric current. Wires capture and feed this direct current (DC) electricity to a solar inverter to be converted to alternating current (AC) electricity. This is known as the “photovoltaic effect.”

(Source: EnergySage.com, Solar-101)

Solar panels can be used for a wide variety of applications including remote power systems for cabins, telecommunications equipment, remote sensing, and of course for the production of electricity by residential and commercial solar electric systems.


Solar Panel Surface Area

Solar Panel Surface Area is the total array area for PV panels. A collection of PV modules is called a PV panel, and a system of panels is an array. Arrays of a photovoltaic system supply solar electricity to electrical equipment.

For users who don't have an array size, but instead the size in Kilowatts use the equation provided by the National Renewable Energy Laboratory (NREL) to define the grid size, below.

Size (kW) = Array Area (m2) * 1 kW/m2 * Module Efficiency(%).

Solar Panel Angle

The performance of solar panels change based on their angle. Find out the optimal angle orientation for your location using the Solar Angle Calculator from the Solar Electricity Handbook.

If you live in the northern hemisphere, you would point your panels due south to capture the maximum amount of sunlight. Also, if you live in the southern hemisphere, you would point your panels due north.

Most homeowners with solar energy systems mount their panels in a fixed position, where the panels can be manually tilted as needed. Find out more about how to calculate the solar panel angle for summer and winter here.

Solar Panel Module Location

Solar Panel Module Location is the installation location of the panel, varying between cladded on the roof vs on a frame can impact how ventilated it is which impacts its performance.

Cove.tool is referring to the EN 15316-4-6 Table B.4 for the 'Solar Panel Module Location' factor calculation. The 'Solar Panel Module Location' is a factor that takes into account the system performance of the building integrated photovoltaic installation depending on:

  1. Conversion system from direct current to alternating current.

  2. Actual operation temperature of the photovoltaic modules.

  3. Building integration of the photovoltaic modules.

The distinction between different building integration could be according to the type of ventilation of the photovoltaic modules. The values for the different types of 'Solar Panel Module Location' factors can be found in the table below:

Solar Panel Module Type

Solar Panel Module Type is there have been many advancements in the Solar Panel industry over the last few years. The panel type significantly impacts the efficiency.

  • a) Mono Crystalline Silicon: Mono Crystalline panels are created from a single continuous crystal structure.

  • b) Thin Film Silicon: Thin Film Silicon cells are made by depositing one or more thin layers of silicon on a substrate such as glass, plastic, or metal.

  • c) Other Thin Film: Thin Film solar cells are made by depositing one or more thin layers of photovoltaic material on a substrate such as glass, plastic, or metal.

  • d) Thin Film Copper: Copper Gallium Indium Selenide solar cell is one of the three mainstream thin-film technologies with a lab efficiency above 20%.

  • e) Thin Film Cadmium: Cadmium Telluride solar cell is one of the three mainstream thin-film technologies with lab efficiency above 20%. CdTe has the lowest Energy Payback time of all mass-produced PV Technologies.

Solar Panel Type

Efficiency

Mono crystalline silicona

0.15

Thin-film amorphous silicon

0.06

Other thin-film layers

0.035

Thin-film copper-indium-gallium-diselenide

0.105

Thin-film cadmium-telluride

0.095

FAQ's

What are the differences between Solar Hot Water and Solar Panels?

  • Aside from using photovoltaics to generate electricity, solar energy is commonly used in thermal applications to heat indoor spaces or fluids. Residential and commercial property owners can install solar hot water systems and design their buildings with passive solar heating in mind to fully take advantage of the sun's energy with solar technology. While solar panels can be used to fuel any electrical equipment, solar hot water systems specifically used solar power to heat water. Learn more about solar hot water here.

Can we use this for PV tax rebate?

  • Depending upon where you live, several rebates or incentives for solar power may contribute towards lowering the cost of having solar energy. Nationwide, the federal Investment Tax Credit (ITC) is one of the primary incentives available to anyone interested in solar energy, as it allows you to deduct 26 percent of the cost of installing a solar system from your federal taxes. cove.tool can help you identify the need of PV and design/size of a particular array, however, pursuing to earn the tax rebate the documentation process requires a more advanced workflow.

Can we model solar energy + battery storage with cove.tool?

  • Currently cove.tool does not a PV battery storage capability. For anyone not familiar, given that solar panels can only produce power when the sun is shining, storing produced but unused energy throughout the day for use at a later time has become increasingly important. For instance, solar batteries store electricity and can be drawn on during periods of low solar production. What’s more, solar-plus-storage solutions work for all scales of solar panel installations and provide many added benefits, from energy reliability to grid resiliency and lower-cost power.

What tool can I use for more detailed PV design?

  • Cove.tool provides a predictive input for PV loads with its energy analysis for the schematic design stage. To get a detailed accurate information about the PV system for your final design, definitely talk with a qualified PV consultant or use tools like PVsyst, Helioscope, and System Advisor Model (SAM) that are specifically designed for PV design and analysis.

Related articles

Did this answer your question?